COMPARISON PRINCIPLE AND CONSTRAINED RADIAL SYMMETRY FOR THE SUBDIFFUSIVE p-LAPLACIAN

نویسندگان

  • Antonio Greco
  • A. Greco
چکیده

A comparison principle for the subdiffusive p-Laplacian in a possibly nonsmooth and unbounded open set is proved. The result requires that the involved sub and supersolution are positive, and the ratio of the former to the latter is bounded. As an application, constrained radial symmetry for overdetermined problems is obtained. More precisely, both Dirichlet and Neumann conditions are prescribed on the boundary of a bounded open set, and the Neumann condition depends on the distance from the origin. The domain of the problem, unknown at the beginning, turns out to be a ball centered at the origin if a positive solution exists. Counterexamples are also discussed. 2010 Mathematics Subject Classification: 35B06, 35N25, 35R35.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust and Efficient Computation of Eigenvectors in a Generalized Spectral Method for Constrained Clustering

FAST-GE is a generalized spectral method for constrained clustering [Cucuringu et al., AISTATS 2016]. It incorporates the mustlink and cannot-link constraints into two Laplacian matrices and then minimizes a Rayleigh quotient via solving a generalized eigenproblem, and is considered to be simple and scalable. However, there are two unsolved issues. Theoretically, since both Laplacian matrices a...

متن کامل

Smooth Shape-Aware Functions with Controlled Extrema

Functions that optimize Laplacian-based energies have become popular in geometry processing, e.g. for shape deformation, smoothing, multiscale kernel construction and interpolation. Minimizers of Dirichlet energies, or solutions of Laplace equations, are harmonic functions that enjoy the maximum principle, ensuring no spurious local extrema in the interior of the solved domain occur. However, t...

متن کامل

Neural Network Based Controller for Constrained Multivariable Systems

This paper presents a new neural network based controller design for multivariable systems. The proposed controller is designed using radial basis function (RBF) neural network. Weight update equation using classical least mean square principle is derived for the RBF network. The controller generates optimal control signals abiding by constraints, if any, on the control signals. Simulation resu...

متن کامل

The Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach

In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality ...

متن کامل

Optimal Control Problems with Symmetry Breaking Cost Functions

Abstract. We investigate symmetry reduction of optimal control problems for left-invariant control systems on Lie groups, with partial symmetry breaking cost functions. Our approach emphasizes the role of variational principles and considers a discrete-time setting as well as the standard continuous-time formulation. Specifically, we recast the optimal control problem as a constrained variation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014